更多>>精华博文推荐
更多>>人气最旺专家

高垣彩阳

领域:华夏生活

介绍:”责编:王亚南...

刘黎明

领域:中国经济网

介绍:光电特征标识技术是一种新型利用光电特征对目标进行识别、定位的现代识别技术。利来国际w66平台,利来国际w66平台,利来国际w66平台,利来国际w66平台,利来国际w66平台,利来国际w66平台

利来国际老牌博彩手机
本站新公告利来国际w66平台,利来国际w66平台,利来国际w66平台,利来国际w66平台,利来国际w66平台,利来国际w66平台
5vq | 2019-01-18 | 阅读(83) | 评论(792)
(2015上海卷)人口状况对一个地区的社会和经济发展有重要影响。【阅读全文】
利来国际w66平台,利来国际w66平台,利来国际w66平台,利来国际w66平台,利来国际w66平台,利来国际w66平台
hdz | 2019-01-18 | 阅读(543) | 评论(522)
自二十世纪八十年代提出林纸结合以来,发展林业造纸,走林纸一体化道路己成为林业和纸业界的共识。【阅读全文】
n5o | 2019-01-18 | 阅读(44) | 评论(13)
2、地位:社会主义的根本经济特征,社会主义经济制度的基础。【阅读全文】
xj6 | 2019-01-18 | 阅读(644) | 评论(369)
但是喝豆浆也有注意事项,以下正确的食用方法是()A、喝没有煮沸的豆浆B、豆浆中冲入鸡蛋C、喝豆浆时搭配其他食物D、用保温瓶长时间储存豆浆C*4、亚硝酸盐属剧毒类化学物质,又叫工业用盐,如酸菜等腌制食品中就含一定量的亚硝酸盐,吃酸菜时最好吃一些什么可减少亚硝酸盐的危害。【阅读全文】
elh | 2019-01-18 | 阅读(318) | 评论(306)
PAGE第1课时 等比数列的前n项和课后篇巩固探究                 A组1.已知数列{an}的通项公式是an=2n,Sn是数列{an}的前n项和,则S10等于(  )解析∵an+1an=2n+12n=2,∴S10=2(1-210)答案D2.在等比数列{an}中,a2=9,a5=243,则{an}的前4项和为(  )解析因为a5a2=27=q3,所以q=3,a1=a2q=3,S4答案B3.已知等比数列{an}的前n项和为Sn,且a1+a3=,a2+a4=,则Snan=解析设公比为q,则q=a2于是a1+a1=,因此a1=2,于是Sn=21-12n1-12=41-12n,而答案D4.在14与之间插入n个数组成一个等比数列,若各项总和为778,则此数列的项数为(  解析设a1=14,an+2=,则Sn+2=14-解得q=-.所以an+2=14·-1解得n=3.故该数列共5项.答案B5.已知首项为1,公比为的等比数列{an}的前n项和为Sn,则(  )====3-2an解析在等比数列{an}中,Sn=a1-anq1-答案D6.对于等比数列{an},若a1=5,q=2,Sn=35,则an=     .解析由Sn=a1-anq1-q答案207.在等比数列{an}中,设前n项和为Sn,若a3=2S2+1,a4=2S3+1,则公比q=    .解析因为a3=2S2+1,a4=2S3+1,两式相减,得a4-a3=2a3,即a4=3a3,所以q=a4答案38.数列12,24,38,…,n2解析∵Sn=12+222+Sn=122+223由①-②,得Sn=12+122+123∴Sn=2-12答案2-19.已知等比数列{an}满足a3=12,a8=,记其前n项和为Sn.(1)求数列{an}的通项公式an;(2)若Sn=93,求n.解(1)设等比数列{an}的公比为q,则a3=所以an=a1qn-1=48·12(2)Sn=a1(1-由Sn=93,得961-12n=10.导学号04994046已知等差数列{an}的首项为a,公差为b,方程ax2-3x+2=0的解为1和b(b≠1).(1)求数列{an}的通项公式;(2)若数列{an}满足bn=an·2n,求数列{bn}的前n项和Tn.解(1)因为方程ax2-3x+2=0的两根为x1=1,x2=b,可得a-3+2=0,ab2-3b+2=0(2)由(1)得bn=(2n-1)·2n,所以Tn=b1+b2+…+bn=1×2+3×22+…+(2n-1)·2n,①2Tn=1×22+3×23+…+(2n-3)·2n+(2n-1)·2n+1,②由①-②,得-Tn=1×2+2×22+2×23+…+2·2n-(2n-1)·2n+1=2(2+22+23+…+2n)-(2n-1)·2n+1-2=2·2(1-2n)1-2-(2n-1)·2n+1-2=(3所以Tn=(2n-3)·2n+1+组1.等比数列{an}的前n项和为Sn,若S2n=3(a1+a3+…+a2n-1),a1a2a3=8,则Sn=++1解析显然q≠1,由已知,得a1(1-q整理,得q=2.因为a1a2a3=8,所以所以a2=2,从而a1=1.于是Sn=1-2n1-2答案A2.已知数列{an}是首项为1的等比数列,Sn是{an}的前n项和,且9S3=S6,则数列1an的前5项和为(或解析由题意易知公比q≠1.由9S3=S6,得9·a1(1-所以1an所以其前5项和为S5=1×答案C3.在等比数列{an}中,a1+a2+…+a5=27,1a1+1a2+…+1a5A.±±解析设公比为q,则由已知可得a两式相除,得a12q4=9,即a32=9,所以a答案C4.若等比数列{an}的前n项和为Sn,且S1,S3,S2成等差数列,则{an}的公比q=    .解析由题意,得a1+(a1+a1q)=2(a1+a1q+a1q2),又a1≠0,q≠0,故q=-.答案-+322+423+解析设Sn=1+322+423+…+n2n-1+n+12n,则Sn=22所以Sn=3-n+3答案3-n6.若等比数列{an}的【阅读全文】
bip | 2019-01-17 | 阅读(788) | 评论(113)
 最大值与最小值学习目标重点难点1.知道函数的最大值与最小值的概念.2.能够区分函数的极值与最值.3.会用导数求闭区间上不超过三次的多项式函数的最大值、最小值.重点:函数在闭区间上的最值的求解.难点:与函数最值有关的参数问题.1.最大值与最小值(1)如果在函数定义域I内存在x0,使得对任意的x∈I,总有______________,则称f(x0)为函数在定义域上的最大值.最大值是相对函数定义域整体而言的,如果存在最大值,那么最大值________.(2)如果在函数定义域I内存在x0,使得对任意的x∈I,总有____________,则称f(x0)为函数在定义域上的最小值.最小值是相对函数定义域整体而言的,如果存在最小值,那么最小值________.2.求f(x)在区间[a,b]上的最大值与最小值的步骤(1)求f(x)在区间(a,b)上的________;(2)将第(1)步中求得的________与______,______比较,得到f(x)在区间[a,b]上的最大值与最小值.预习交流1做一做:函数y=x-sinx,x∈eq\b\lc\[\rc\](\a\vs4\al\co1(\f(π,2),π))的最大值是______.预习交流2做一做:函数f(x)=x3-3ax-a在(0,1)内有最小值,则a的取值范围为______.预习交流3(1)函数的极值与最值有何区别与联系?(2)如果函数f(x)在开区间(a,b)上的图象是连续不断的曲线,那么它在(a,b)上是否一定有最值?若f(x)在闭区间[a,b]上的图象不连续,那么它在[a,b]上是否一定有最值?在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引1.(1)f(x)≤f(x0) 惟一 (2)f(x)≥f(x0) 惟一2.(1)极值 (2)极值 f(a) f(b)预习交流1:提示:∵y′=1-cosx≥0,∴y=x-sinx在eq\b\lc\[\rc\](\a\vs4\al\co1(\f(π,2),π))上是增函数,∴ymax=π.预习交流2:提示:∵f′(x)=3x2-3a=3(x2-af(x)在(0,1)内有最小值,∴方程x2-a=0有一根在(0,1)内,即x=eq\r(a)在(0,1)内,∴0<eq\r(a)<1,0<a<1.预习交流3:提示:(1)①函数的极值是表示函数在某一点附近的变化情况,是在局部上对函数值的比较,具有相对性;而函数的最值则是表示函数在整个定义区间上的情况,是对整个区间上的函数值的比较,具有绝对性.②函数在一个闭区间上若存在最大值或最小值,则最大值或最小值只能各有一个,具有惟一性;而极大值和极小值可能多于一个,也可能没有,例如:常函数就没有极大值,也没有极小值.③极值只能在函数的定义域内部取得,而最值可以在区间的端点取得.有极值的不一定有最值,有最值的不一定有极值,极值有可能成为最值,最值只要不在端点处则一定是极值.(2)一般地,若函数f(x)的图象是一条连续不断的曲线,那么f(x)在闭区间[a,b]上必有最大值和最小值.这里给定的区间必须是闭区间,如果是开区间,那么尽管函数是连续函数,那么它也不一定有最大值和最小值.一、求函数在闭区间上的最值求下列函数的最值:(1)f(x)=-x3+3x,x∈[-eq\r(3),eq\r(3)];(2)f(x)=sin2x-x,x∈eq\b\lc\[\rc\](\a\vs4\al\co1(-\f(π,2),\f(π,2))).思路分析:按照求函数最值的方法与步骤,通过列表进行计算与求解.1.函数f(x)=x3-2x2+1在区间[-1,2]上的最大值与最小值分别是__________.2.求函数y=5-36x+3x2+4x3在区间[-2,2]上的最大值与最小值.1.求函数在闭区间上的最值时,一般是先找出该区间上使导数为零的点,无需判断出是极大值还是极小值,只需将这些点对应的函数值与端点处的函数值比较,其中最大的是最大值,最小的是最小值.2.求函数在闭区间上的最值时,需要对各个极值与端点函数值进行比较,有时需要作差、作商,有时还要善于估算,甚至有时需要进行分类讨论.二、与最值有关的参数问题的求解已知当a>0时,函数f(x)=ax3-6ax2+b在区间[-1,2]上的最大值为3,最小值为-29,求a,b的值.思路分析:先求出函数f(x)在[-1,2]上的极值点,然后与两个端点的函数值进行比较,建立关于a,b的方程组,从而求出a,b的值.若函数f(x)=-x3+3x2+9x+a在区间[-2,2]上的最大值为20,求它在该区间上的最小值.【阅读全文】
izq | 2019-01-17 | 阅读(825) | 评论(112)
据史料记载,早在殷、周时期,江、浙一带就有一种纪念太师闻仲的边薄心厚的“太师饼”,此乃我国月饼的“始祖”。【阅读全文】
ixy | 2019-01-17 | 阅读(336) | 评论(791)
一、对生活消费的影响学校超市门口(陈杰和同学杨凯从超市买东西出来)杨凯:饮料涨价了,饮料以前3元/瓶,现在涨到5元/瓶了。【阅读全文】
利来国际w66平台,利来国际w66平台,利来国际w66平台,利来国际w66平台,利来国际w66平台,利来国际w66平台
3yu | 2019-01-17 | 阅读(453) | 评论(719)
青岛理工大学工学硕士学位论文2.66x10~,钢板已发生腐蚀,涂层防护性能变差。【阅读全文】
m3g | 2019-01-16 | 阅读(375) | 评论(893)
事实上,在新形势下,法院办室工作涉及面广,作为其一名工作人员,要学习的知识很多,如何为法院领导当好参谋助手,提供决策的依据,是很值得深入探讨和研究的问题。【阅读全文】
i4y | 2019-01-16 | 阅读(870) | 评论(770)
如用户存在《阿里巴巴服务条款》约定阿里巴巴可向用户终止协议的情形,阿里巴巴有权对用户账户进行关闭。【阅读全文】
du4 | 2019-01-16 | 阅读(515) | 评论(54)
同时,文档投稿赚钱网高度重视知识产权保护,遵守中国知识产权法律(《著作权法》、《商标法》、《专利法》)、法规和其他具有约束力的规范性文件,坚决反对任何违反中华人民共和国法律法规的行为。【阅读全文】
wnt | 2019-01-16 | 阅读(717) | 评论(698)
2.环境承载力与人口合理容量的区别。【阅读全文】
qxo | 2019-01-15 | 阅读(723) | 评论(108)
三、工作要求各工程指挥部和铁路公司要按照“五定、三统一、一查处”的检查制度认真开展“十严禁”检查处理工作。【阅读全文】
3qr | 2019-01-15 | 阅读(7) | 评论(576)
三·立足本职岗位,又好又快的完成工作任务。【阅读全文】
共5页

友情链接,当前时间:2019-01-18

w66利来国际 利来国际旗舰版 利来国际最老牌 利来娱乐网 w66com
利来国际w66手机网页 利来国际老牌软件 国际利来ag厅 利来客服 利来国际家居集团
利来网上娱乐 利来国际旗舰版 利来国际最老牌 利来娱乐备用 利来国际w66手机网页
w66利来国际老牌 利来娱乐网址 利来娱乐备用 w66.利来国际 利来国际www.w66com
论坛| 秀山| 喜德县| 琼结县| 晋江市| 桂平市| 轮台县| 肃南| 中西区| 阿拉善盟| 舒城县| 南京市| 霍林郭勒市| 和硕县| 邯郸市| 清丰县| 公主岭市| 贵州省| 集安市| 永城市| 福建省| 资溪县| 龙海市| 左贡县| 马龙县| 五河县| 石林| 收藏| 来宾市| 通道| 静海县| 璧山县| 黄骅市| 临海市| 金乡县| 宁武县| 共和县| 昭苏县| 竹山县| 枣强县| 确山县| http://m.30835172.cn http://m.88092796.cn http://m.62163503.cn http://m.40929049.cn http://m.37252776.cn http://m.38837001.cn